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What is inductive bias?
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Inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions 
that the learner uses to predict outputs of given inputs that it has not encountered. 

It helps the learner predict and generalize better from limited training data to unseen data.  



Where to embed inductive biases?
v Network architecture, e.g., hierarchical feature learning in 

CNNs, sequential data dependencies in RNNs, etc.
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Where to embed inductive biases?
v Network architecture, e.g., hierarchical feature learning in 

CNNs , sequential data dependencies in RNNs, etc.
v Network losses, e.g., regularization terms (vs. data terms)
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To avoid overfitting



Where to embed inductive biases?
v Network architecture, e.g., hierarchical feature learning in 

CNNs , sequential data dependencies in RNNs, etc.
v Network losses, e.g., regularization terms (vs. data terms)
v More fundamentally, shape the data representation learned
v For 3D models, there is no unique choice; there are many choices  
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Examples of 3D representation bias
v Compactness, e.g., voxels/SDFs vs. CAD primitives (e.g., CSG)
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Examples of 3D representation bias
v Compactness, e.g., voxels/SDFs vs. CAD primitives (e.g., CSG)
v Surface bias, e.g., 3D [Kerbl et al. 2023] vs. 2D GS [Huang et al. 2024], etc.
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Examples of 3D representation bias
v Compactness, e.g., voxels/SDFs vs. CAD primitives (e.g., CSG)
v Surface bias, e.g., 3D [Kerbl et al. 2023] vs. 2D GS [Huang et al. 2024], etc.
v More fundamentally, bias/shape the learned 3D rep to capture 

the most predicable property, e.g., from a class description
v Why? Since predictability ⇨ transferability & generalizability 
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When you say an object class, e.g., “carts,” 
“lamps,” or “chairs,” etc., what properties or 

attributes you are most sure of about it?



What is most predicable about chairs?
v Shape?

v Topology?

10

Image taken from dreamstimes.com

https://www.dreamstime.com/stock-photos-chairs-image2737993


What is most predicable about chairs?
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Image taken from pinterest.ca

v Shape?

v Topology? 

v Color?

v Texture?

v Material?

https://www.pinterest.ca/pin/439523244854956238/


Chair or not?
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Why is this not a chair? Or is it? 
Ask Chamfer Distance and it would probably say yes J



“What makes a chair a chair?”
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CVPR 2011

“There’s little we can find in common to all 
chairs – except for their intended use.”

Marvin Minsky: “The Society of Mind” [1986]



From Minsky’s “The Society of Mind”
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“There’s little we can find in common to all 
chairs – except for their intended use.”

“… we need to combine at least two different 
kinds of descriptions (of objects). On one side, 
we need structural descriptions for recognizing 

chairs when we see them. On the other side, 
we need functional descriptions in order to 

know what we can DO with chairs.”



Structured models mimic human perception
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“For the task of object 
recognition, the visual system 

decomposes shapes into 
parts, . . ., parts with their 

descriptions and spatial 
relations provide a first index 
into a memory of shapes …

Structured models reflect our perception of the world, leading to 
higher degrees of transferability and controllability (e.g., editability).



Object functions and structures
v Object functions are mainly characterized by object structures, 

i.e., parts + relations,
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Object functions and structures
v Object functions are mainly characterized by object structures, 

i.e., parts + relations, manifested in motion
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Object functions and structures
v Object functions are mainly characterized by object structures, 

i.e., parts + relations, manifested in motion, thru interactions
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Non-functionalFunctional
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Representing object-object interactions
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v IBS: Intersection Bisector Surface (to describe the interaction) 
= an encoding of trimmed Voronoi boundary



Key take-away

20

v A representation (e.g., IBS for interactions) that emphasizes functional 
understanding is more robust/invariant than any representation of a 3D 
object’s intrinsic itself, whether it is shape, topology, color, or texture

IBS: chair and table



ICON (Interaction CONtext) series
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ICON: [Hu et al. SIGGRAPH 2015]

A representation of 
object functionality



ICON (Interaction CONtext) series
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ICON: [Hu et al. SIGGRAPH 2015]

A representation of 
object functionality

ICON2: [Hu et al. SIGGRAPH 2016]

Learning functionality of 
an object category

“What makes a handcart a 
handcart, functionally?”



ICON (Interaction CONtext) series
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ICON: [Hu et al. SIGGRAPH 2015]

A representation of 
object functionality

ICON3: [Hu et al. SIGGRAPH Asia 2017]

Learning part mobility 
from few static images

ICON2: [Hu et al. SIGGRAPH 2016]

Learning functionality of 
an object category

“What makes a handcart a 
handcart, functionally?”



ICON (Interaction CONtext) series
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ICON: [Hu et al. SIGGRAPH 2015]

A representation of 
object functionality

ICON3: [Hu et al. SIGGRAPH Asia 2017]

Learning part mobility 
from few static images

ICON2: [Hu et al. SIGGRAPH 2016]

Learning functionality of 
an object category

“What makes a handcart a 
handcart, functionally?”

ICON4: [Hu et al. SIGGRAPH 2018]

A generative network for 
usage scenarios



Robot pick-and-place by imitation learning
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The problem
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v Given one or few demo manipulations of pick-and-place, learn to 
perform the task on a new (target) object in arbitrary pose

Pick demo Pick test Place testPlace demo

Source 
object

Target 
object

Anchor 
object

Anchor 
object

Source 
object Target 

object



Key question
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v Given one or few demo manipulations of pick-and-place, learn to 
perform the task on a new (target) object in arbitrary pose

v How to encode relative poses (i.e., interactions) between source/target 
objects and the anchor object to generalize well to new targets?

Pick demo Pick test Place testPlace demo

Source 
object

Target 
object

Anchor 
object

Anchor 
object

Source 
object Target 

object



v The Intersection Bisector Surface (IBS) is robust against shape variations 

Key observation
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v The Intersection Bisector Surface (IBS) is robust against shape variations 

v Sample points from the IBS (instead of around the anchor object), and 
encode neural features to form an interaction template

Use interaction template
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v The Intersection Bisector Surface (IBS) is robust against shape variations 

v Sample points from the IBS (instead of around the anchor object), and 
encode neural features to form an interaction template

Optimize pose to match IBS template
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Target object

v For pick test, re-pose 
gripper to match the 
interaction templates

v For place test, transform 
target object to match 
interaction templates

[Huang et al. ICRA 2023]



Motion generation for 3D objects
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v Functions of daily objects often performed through part articulation

v Goal: generate part articulations for an input mesh without 3D annotation 
by leveraging open-vocabulary capabilities of video diffusion models

v The foundation model provides the inductive bias to avoid 3D annotations



Motion generation for 3D objects
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v Functions of daily objects often performed through part articulation

v Goal: predict part articulations on an input mesh without 3D annotation 
by leveraging open-vocabulary capabilities of video diffusion models

v But existing text2video models (e.g., SVD) do not handle articulations well 

“A person opening the 
door of dishwasher”

“A person opening 
the lid of the laptop”

Results from Stable Video Diffusion (SVD) [Blattmann et al. 2023]



Motion generation for 3D objects
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v Few-shot finetuning of SVD with category-specific motion videos

v Video motion personalization to input 3D mesh, then motion transfer 

v Training of foundational models can be limited by own inductive bias …

ATOP: Articulate That Object Part [Vora et al. 2025]
3D Mesh

(Rest State) Multi-View Videos Articulated 3D Mesh



Learning structured 3D representations
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Example 1: 1st multi-modal B-Rep generation
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v B-Rep (boundary representation): de facto standard in CAD  

Holistic Latent (HoLa) space + diffusion-based generator [Liu et al. SIG 2025]



Example 1: key idea = holistic latent
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v Instead of having separate latents (and generators) for each 
primitive, learn a single surface-centric holistic latent

Holistic Latent (HoLa) space + diffusion-based generator [Liu et al. SIG 2025]



Example #2: use of CAD programs

38

v Programs, like languages, are inherently structured
v Easy to inject inductive biases suitable for CAD or architecture
v Program-based learning builds on token prediction, which can 

leverage the power of modern-day transformers



Example #2: use of CAD programs
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v Programs, like languages, are inherently structured
v Easy to inject inductive biases suitable for CAD or architecture
v Program-based learning builds on token prediction, which can 

leverage the power of modern-day transformers

Highly sparse, incomplete, 
and noisy point cloud

Output
(3D Abstraction)

Reference
(Dense Mesh)

#pc = 200

Architectural Programs for structured 3D abstraction [Huang et al. CVPR 2025]



CVPR’25 Highlight: Poster Session 2, Exhibition Hall D, Poster #114, 4-6PM, June 13



Another inductive bias via human perception
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“Seeing” 3D/depth is an ill-posed task, performed by 
perception or extrapolation by our brain based on

v Binocular disparities: diff images from two eyes

v Monocular cues: shading, occlusion, perspectives

What can we learn in terms of 3D representation: 
a perceptually motivated representation should be 
a pretty good “extrapolator” over the unseen …



Start w/ IM-Net: an implicit field generator
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v Learn a mapping from a 3D query point (x, y, z) to inside/outside 
status (= occupancy) with respect to shape boundary

3D CNN shape 
encoder

[Chen and Zhang, CVPR 2019]



Feature encoding in IM-Net
Original shape 

encoder is global

43IM-Net [Chen and Zhang, CVPR 2019]



Improved feature encoding

IM-Net [Chen and Zhang, CVPR 2019]

v Better to encode local features

v Even better with specificity to query point
44



Key: encode features perceptually
v Encode point features via multi-view perception: “What does the shape 

look at from various view/anchor points towards the query point (x)?”
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Anchor point

Anchor pointARO = Anchored Radial Observations



Key: encode features perceptually
v Encode point features via multi-view perception: “What does the shape 

look at from various view/anchor points towards the query point (x)?”
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Anchor point

Anchor point

Encode features of 
these closest points

ARO = Anchored Radial Observations



Generality and quality of reconstruction

47Ill-posed task



An extreme example for generalizability
v Train with a single 3D model while attaining generalizability

ARO-Net: neural 3D reconstruction from sparse point clouds [Wang et al. CVPR 2023]
48



Seek 3D reps ``biased” towards the task
v Solving ill-posed tasks (e.g., sparse reconstruction) require understanding

v A “perceptual” feature representation can understand/extrapolate better
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Latest: multi-modal generation
v Solving ill-posed tasks (e.g., sparse reconstruction) requires understanding

v A “perceptual” feature representation can understand/extrapolate better
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An extension of ARO-Net: Masked Anchored SpHerical Distances (MASH) [Li et al. 2025]

Completion

Blending

Point cloud

VoxelsSingle image



Masked anchored spherical distances
v Parametric representation of MASH from a single anchor
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What more can we learn from the brain?
v Especially in the context of robotics and Embodied AI (EAI)

v Many decisions are not made “on-the-fly”, but on knowledge/memory

v Our brain possesses an innate spatial awareness, e.g., for navigation

v Our brain also possesses cognitive awareness, e.g., for action planning

v Should AI agents form similar spatial and cognitive maps too?

How do humans do these in our brains?
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Internal GPS in human/animal brains

v Nobel Prize in 2014 for understanding neural processes in the mental 
representation of spatial environments to enable us to navigate

v Discovery of location-aware place cells in rats in 1971

53

John O’Keefe



Internal GPS in human/animal brains

v Nobel Prize in 2014 for understanding neural processes in the mental 
representation of spatial environments to enable us to navigate

v Discovery of location-aware place cells in rats in 1971
v Later works discovered other cells (e.g., speed cells) for the “internal GPS”
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John O’Keefe

Head-direction cells give 
directionality

Place cells 
provide location

Grid cells give 
sense of latitude 

and longitude

Border cells 
provide perimeters 

of a given space



https://www.youtube.com/watch?v=216r36KCE1M
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https://www.youtube.com/watch?v=216r36KCE1M
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Unknowns and interesting facts
v How all the cells work together? Still on-going research …

v Dementia patients (Alzheimer's) lose these cell functions first
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Missing ingredient?

v LLMs exhibit signs of similar decline as 
dementia patients

v Are LLMs missing these cell functions?

v Questions on representation will emerge
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We navigate actions too!

https://www.youtube.com/watch?v=oNc2VU6gYcw&t=8s

v Our brain organizes potential 
actions and outcomes in a 
cognitive map, similar to the 
way we navigate spaces

v The closer two actions were 
on this cognitive map, the 
more participants perceive 
them as similar

https://www.youtube.com/watch?v=oNc2VU6gYcw&t=8s


Summary
v Many representation choices were computationally motivated:
v Low-level (rather than structural) reps make differentiability easier
v NeRF/IM-Net/OccNet/DeepSDF motivated by continuity of volume rep
v 3DGS (also Instant NGP earlier) popularized due to rendering efficiency
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Summary
v Should consider inductive biases for 3D gen & rep learning
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Representations: perceptual
Robot’s spatial & 
cognitive map?

Human perception, 
what can we learn?

ARO

MASH



Summary
v Should consider inductive biases for 3D gen & rep learning
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Function/motion
/interaction

Representations: perceptual, interaction

IBS/ICON

ATOP

Human perception, 
what can we learn?

Robot’s spatial & 
cognitive map?

ARO

MASH



Summary
v Should consider inductive biases for 3D gen & rep learning
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Function/motion
/interaction

Geometry/space
/physics

Representations: perceptual, interaction, structural
ARO

MASH
HoLa

IBS/ICON

ATOP
Robot’s spatial & 
cognitive map? ArcPro

Human perception, 
what can we learn?



Summary
😀 Inductive biases improve generalizability and alleviate data scarcity 
☹   But the assumptions/priors can also be limiting at the same time
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Robots opening everything and 
acquiring both exteriors and interiors



Summary
😀 Inductive biases improve generalizability and alleviate data scarcity 
☹   But the assumptions/priors can also be limiting at the same time
😀 Functional inductive biases covered are still implicit, e.g.,

v Neural representations of object-object interactions 
v Learning structured representations: a necessity but not exactly the same
v Motion priors from video foundational models: realization of functions 
☹   Differentiable functionality loss for 3D generation still elusive
😀 Goal: learn structured, text-grounded, motion-enabled 3D representations
😀 Build foundation models with spatial intelligence, encompassing 3D, text, 

& image, beyond Q&A and NTP, to do things in physical worlds
66

Robots opening everything and 
acquiring both exteriors and interiors
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