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P The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the learner uses to predict

hift of bi — : — . - - -
Shift of bias outputs of given inputs that it has not encountered.!' Inductive bias is anything which makes the algorithm learn one pattern instead
See also of another pattern (e.g., step-functions in decision trees instead of continuous functions in linear regression models). Learning
References

involves searching a space of solutions for a solution that provides a good explanation of the data. However, in many cases, there
may be multiple equally appropriate solutions.?] An inductive bias allows a learning algorithm to prioritize one solution (or
interpretation) over another, independently of the observed data.[®!

Inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions
that the learner uses to predict outputs of given inputs that it has not encountered.

It helps the learner predict and generalize better from limited training data to unseen data.




** Network architecture, e.g., hierarchical feature learning in
CNNs, sequential data dependencies in RNNs, etc.




** Network losses, e.g., regularization terms (vs. data terms)

To avoid overfitting




** More fundamentally, shape the data representation learned
** For 3D models, there is no unique choice; there are many choices
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s* Compactness, e.g., voxels/SDFs vs. CAD primitives (e.g., CSG)

Voxels CSG



+»* Surface bias, e.g., 3D [Kerbl et al. 2023] VS. 2D GS [Huang et al. 2024], etc.
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** More fundamentally, bias/shape the learned 3D rep to capture
the most predicable property, e.g., from a class description
s Why? Since predictability = transferability & generalizability
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+** Shape?

*»* Topology?

Image taken from dreamstime



https://www.dreamstime.com/stock-photos-chairs-image2737993

** Color?
** Texture?

*» Material?

Image taken from pinterest.ca



https://www.pinterest.ca/pin/439523244854956238/

Why is this not a chair? Or is it?
Ask Chamfer Distance and it would probably say yes ©
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Abstract

Many object classes are primarily defined by their func-
tions. However, this fact has been left largely unexploited
by visual object categorization or detection systems. We
propose a method to learn an affordance detector. It iden-
tifies locations in the 3d space which “support” the par-
ticular function. Our novel approach “imagines” an actor
performing an action typical for the target object class, in-
stead of relying purely on the visual object appearance. So,
function is handled as a cue complementary to appearance,
rather than being a consideration after app based
detection. Experimental results are given for the functional
category “sitting”. Such affordance is tested on a 3d rep-
resentation of the scene, as can be realistically obtained
through SfM or depth cameras. In contrast to appearance-
based object detectors, affordance detection requires only
very few training examples and generalizes very well to
other sittable objects like benches or sofas when trained on
a few chairs.

1. Introduction

“An object is first identified as having important func-
tional relations, [...] perceptual analysis is derived of the
functional concept [...].”

Nelson, 1974, [17]

“Affordances relate the utility of things, events, and
places to the needs of animals and their actions in fulfill-
ing them [...]. Affordances themselves are perceived and, in

fact, are the essence of what we perceive.”
Gibson, 1982, [8, p. 60]
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What Makes a Chair a Chair?
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Figure 1. The “chair-challenge” by I. and H. Biilthoff [3] (reprint
with the author’s permission).

These quotes emphasize that functional properties or af-
d. ! are ial for forming pts and learni
object categories. Experiments (e.g. [18, 4]) have dg0On-
strated that both appearance and function are sipsfig cues
for learning by infants. Initially they attegg#only to the
form of an object. Later they use fors d function and
finally (by the age of 18 months) theyftend to the relation-
ships between form and functioj ‘urthermore, Booth and
‘Waxman [2] have identified #€o salient cues that facilitate
categorization in infane amely (i) object functions and
(i) object names. reover, names of objects most often
evolve on the bgg#€ of function?.

‘Wherea; this is well known for a long time, it has
been I ostly unused for object detection in p

“There’s little we can find in common to all
chairs — except for their intended use.”

Marvin Minsky: “The Society of Mind” [1986]

visjpfl. Taking a look at the results of the recent Pas
C Challenge [5], the performance still sf ’pends

“There’s little we can find in common to all chairs — ex-

cept for their intended use.” .
Minsky, 1986, [16, p. 123]

“[...] objects like coffee cups are artifacts that were cre-
ated to fulfill a function. The function of an object plays a
critical role in processing that object [... for] categorization

and naming.”
Carlson-Radvansky et al., 1999, [4]

“Affordance: A situation w fTect's sensory characteristics in-
twitively imply its funggi Znd use. [...] A chair, by its size, its curva-
ture, its b; p its position, suggests sitting on it.”, http: //www.

TTityfirst.com/glossary/affordance, 2010/07/28. In-
troduced in 1979 by Gibson [9, p. 127] based on the verb afford.

2When considering the evolution of a word for an object, most of
the time it is based on its function. For example the word “chair”: PIE
base *sed- (to sit) — Latin sedentarius (sitting, remaining in one place)
— sedentary (meaning “not in the habit of exercise”) — cathedral —
chair. http: / /www.etymonline . com, 2010/10/02.
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12.5 THE FUNCTIONS OF STRUCTURES

« N

Many things that we regard as physical are actually psychological. To see why this is so, let’s
try to say what we mean by “chair.” At first it seems enough to say

“A chair is a thing with legs and a back and seat.”
But when we look more carefully at what we recognize as chairs, we find that many of them

Ao not 6t thie decerintinn hacauce they don't divide into thaee senarate narte When 4l is done,
there’s little we can find in common to all chairs—except for their intended use.

“A chair is something you can sit upon.”

nsh msdumuthzt-rrmdtomblmalkas!rlndaﬁrrrnlhnd‘ofdmpuonsOn
one side, we need structural descriptions for recognizing chairs when we see them. On the
oﬂmndc-rmedfunmonaldcscnm.nord«lnhm-M-tcmdoml.hchzm We

Ppropose a vague association, btcauw mn mdﬂ for it to have some use, we nced more intimate
details about how those chair parts actually help a person to sit. To catch the proper meaning,
we need connections between parts of the chair structure and the requirements of the human
body that those parts are supposed to serve. Our network needs details like these:

STRUCTURE FUNCTION °

Without such knowledge, we might just crawl under the chair or try to wear it on our head
But with that knowledge we can do amazing things, like applying the concept of a chair to see
how we could sit on a box, even though it has no legs or back!

Uniframes that include structures like this can be powerful. For example, such knowledge
about relations between structure, comfort, and posture could be used to understand when a
box could serve as a chair: that is, only when it is of suitable height for a person who does not
require a backrest or room to bend the knees. To be sure, such clever reasoning requires special
mental skills with which to redescribe or “reformulate”™ the descriptions of both box and chair
0 that they “match”™ despite their differences. Until we learn to make old descriptions fit new

rcumstances, our old knowledge can be applied only to the circumstances in which it was
Jearned. And that would scarcely ever work, since circumstances never repeat themselves

perfectly

LEARNING MEANING @

From Minsky's “The Society of Mind”

we need to combine at least two different
kinds of descriptions (of objects). On one side,
we need structural descriptions for recognizing
chairs when we see them. On the other side,

we need functional descriptions in order to
know what we can DO with chairs.”




structured models mimic human perception

Cognition, 18 (1984) 65-96 2

“For the task of object

D % recognition, the visual system
’ Parts of recognition*
D.D. HOFFMAN

decomposes shapes into
@ o, i parts, . . ., parts with their
WA AICHARDS descriptions and spatial

Hempms I ey relations provide a first index

Absract into a memory of shapes ...

We propose that, for the task of object recognition, the visual system decom- \

Structured models reflect our perception of the world, leading to
higher degrees of transferability and controllability (e.g., editability).




** Object functions are mainly characterized by object structures,
i.e., parts + relations,

A

Functional Non-functional



** Object functions are mainly characterized by object structures,
i.e., parts + relations, manifested in motion

Functional Non-functional ] [ l




** Object functions are mainly characterized by object structures,
i.e., parts + relations, manifested in motion, thru interactions
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** IBS: Intersection Bisector Surface (to describe the interaction)
= an encoding of trimmed Voronoi boundary




Key take-away

** A representation (e.g., IBS for interactions) that emphasizes functional
understanding is more robust/invariant than any representation of a 3D
object’s intrinsic itself, whether it is shape, topology, color, or texture

IBS: chair and table
20



A representation of
object functionalit

ICON: [Hu et al. SIGGRAPH 2015]
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IGON (Interaction CONtext) series
e

¥ X
“What makes a handcart a ‘\: %:i
handcart, functionally?” " A8

ICON2: [Hu et al. SIGGRAPH 2016]
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Learning part mobility
rom few static imag
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ICON3: [Hu et al. SIGGRAPH Asia 2017]
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A generative network fo
usage scenarios
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ICON4: [Hu et al. SIGGRAPH 2018]
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Demo 8x Test 4x

Test 4x
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The problem

** Given one or few demo manipulations of pick-and-place, learn to
perform the task on a new (target) object in arbitrary pose

Anchor Anchor
object object
Source
object Target
Source object
object

7

Pick demo Pick test Place demo Place test

27



Key question

Anchor

Anchor
object object
. Source
: object Target
Source object
object \\
< ///
Pick demo Pick test Place demo Place test

** How to encode relative poses (i.e., interactions) between source/target
objects and the anchor object to generalize well to new targets?

28



** The Intersection Bisector Surface (IBS) is robust against shape variations

29



s Sample points from the IBS (instead of around the anchor object), and
encode neural features to form an interaction template

30



s For pick test, re-pose
gripper to match the
interaction templates

.+ +» For place test, transform

target object to match
interaction templates

Target object [Huang et al. ICRA 2023] :



** Functions of daily objects often performed through part articulation

¢ Goal: generate part articulations for an input mesh without 3D annotation
by leveraging open-vocabulary capabilities of video diffusion models

** The foundation model provides the inductive bias to avoid 3D annotations

32



s But existing text2video models (e.g., SVD) do not handle articulations well

“a person oyening

“A person opening the
df)p the lid of the laptop”

or of dishwasher”

Results from Stable Video Diffusion (SVD) [Blattmann et al. 2023] 33



s Few-shot finetuning of SVD with category-specific motion videos
** Video motion personalization to input 3D mesh, then motion transfer

** Training of foundational models can be limited by own inductive bias ...

TTE ¥ N R
EPUYPEP

3D Mesh
(Rest State) Multi-View MEEes Articulated 3D Mesh

ATOP. Articulate That Object Part [Vora et al. 2025]
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SFU

Learning Structured CAD
Representations for 3D Digital Twins

Text Multi-view images

The object is a rectangular plate
with a central civcular hole @ 5=

and four mounting holes.

The plate has a flat surface
and sharp edges.

\,-—~

Wi

Hao (Richard) lllﬂll!l, Simon Fraser University (SFU)
CVPR Workshop on 3D Digital Twins, June 12, 2025
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Example 1: 1! multi-modal B-Rep generation

** B-Rep (boundary representation): de facto standard in CAD

Conditional B-rep generation from various inputs

Text Point cloud Multi-view images 2D sketch

El

=i

N

Holistic Latent (HolLa) space + diffusion-based generator [Liu et al. SIG 2025]

The object is a rectangular plate
with a central circular hole
and four mounting holes.

The plate has a flat surface

and sharp edges.

Unconditional B-rep generation

36



Example 1: key idea = holistic latent

** Instead of having separate latents (and generators) for each
primitive, learn a single surface-centric holistic latent

B 3 '
W |
“\ '\ | |

" Vertex latent vectors - v
Sl ]

10 : —— = |

Curve latent vectors »
ﬂ Holistic latent vectors

Surface latent vectors

Previous models A B-rep with 7 surface primitives Ours

Holistic Latent (HolLa) space + diffusion-based generator [Liu et al. SIG 2025]

37



Example #2: use of GAD programs

** Programes, like languages, are inherently structured
¢ Easy to inject inductive biases suitable for CAD or architecture

** Program-based learning builds on token prediction, which can
leverage the power of modern-day transformers

38



Example #2: use of GAD programs

¢ = SetGround(-.28)
L= CreateLayer(

parent= ¢,
. . height=.09,
Architectural Programs for structured 3D abstraction [Huang et al. CVPR 2025] contour-[(-43, 22), (25, 35)
(.33,-.10), (.11, -.14),
(.064, .082), (-.16, .04),
(-.12,-.19), (-.35,-.23))
L.~ CreateLayer(
@ parent=Li,
height= .46,
contour=[(-.43, .22), (-.21, .27),
(-.16,.039), (-.39, -.0041)])
Ls = CreateLayer(
z /‘/ parent=Li,
r height=.14,
contour=[(.021, .31), (.25, .35),
(.33, -.10), (.11, -.14)])
Li= CreateLayer(

°

#pc'=200 -

. . rent=Ls,
Highly sparse, incomplete, Output Reference height- 21,
. . . contour=[(.021,.31), (.25, .35),
and noisy point cloud (3D Abstraction) (Dense Mesh) (29..13). (064, .082))

39



CVPR’25 Highlight: Poster Session 2, Exhibition Hall D, Poster #114, 4-6PM, June 13

JUNET1-15, 2025

i o] X %

ArcPro: Architectural Programs for Structured 3D Abstraction of Sparse Points

Qirui Huang'?, Runze Zhang', Kangjun Liu?, Minglun Gong?, Hao Zhang?* Hui Huang1*
'Shenzhen University 2Pengcheng Laboratory 3University of Guelph “Simon Fraser University

[Motivation] Method! Experiments

Problem: Recover structured 3D abstractions from highly sparse

SfM Point Cloud Sparse Samping Point Cloud s
and low-quality point clouds of architectures. DSL DSL Definition: Data Synthesis: Method g o -~ rgpaE it Clond U Stady
y . RepresentArchitecture asa Shape Program Prepare Training Data PolyFit (“ ] 84 7 11 40% 00473 4365 91 78 12 15% 00458 7779 0. 3’?
KSREJ 280 97 97 7% 0097 05 2 &2 &0 N% 0Bl I L%
| ;_ e Y " (Promamil | N(Statementy (Progam) [ ProxyRecon [S] 107 114 58 100% 0.0243 4364 60 90 34 100% 0.0256 5340 21.0%
Sparse / Incomplete / / - (R R CA[33] 60 180 180 100% 00363 6246 56 168 168 100% 0039 6987  0.1%
Noisy / Outlier / SfM / i (SetGround) | mczmd(z_(mém)) : BSP-Net[6] 132 96 84 100% 00431 6671 102 170 67 100% 00487 7162  09%
Non-uniform density § o A e== e e T ByeeTD) e Fioe W (Cositons’) T Y Ours 64 36 14 100% 00154 3873 27 32 15 100% 00219 4932  76.7%
#pc=200
|r|;;:lt Output Reference (Contour) |= <ru{,vgar.? ‘s pont s ‘Spase Samping Pt Gt s
. . A : {Polygon) |= (PointList) & ¥ [
Challenges: Optimization-based methods fail at plane detection <Puu;§m) E <(P::nt> [ gu-miz<l’uimm> 5| TEE g
4 ) 3 : o oat) Float :
on diverse, low-quality data, while learning-based approaches re- o e O | Y & P i g |} .
quire suitable 3D representations and lack sufficient training data. (LayerID) = a symbol in {, Ly,.... L1} " \ - =1 K o .
Our Solution: Represent the architecture as a shape program using Wi = : '
a domain-specific language (DSL). —— - <N L\ \
Motivations of DSL: 1) Inject architectural priors; 2) Provide a more raining: Next Token Prediction Loss L R . = O !
compact representation space; 3) Leverage mature procedural |
modeling research to synthesize training data. 3D Convolution . Transformer ar= A =" ‘n“ p
More Advantages: 1) Editability via adjustable program parame- Encoder Decoder S
ters; 2) Scalability through DSL extensions; 3) Compatibility with 7|\ = M :
natural-language modality s w3 @ il :
Contributions Applications

*The first program-based method for structured representation EEEREEEEEEEE » f/‘("‘\
learning from sparse architectural point clouds. ‘q ’ \! H"}' . s P

* We connect feedforward and inverse procedural modeling by ap- - % P R
plying a feedforward process to synthesize training data, enabling il a0 25,35, R R IE':‘ :
the network to make reverse predictions. a ;:uw ol E—, -l S

» Comprehensive experiments demonstrate that ArcPro outperforms @ (b) (©

existing architecture proxy reconstruction and learning-based 3D

abstraction methods.
T - g

More applications of ArcPro: (a) architecture geometry structure analysis and natu-
ral language retrieval; (b) processing of raw SfM point clouds with ground points v
from drone aerial multi-view images; (c) processing of LIDAR-derived point clouds. =




“Seeing” 3D/depth is an ill-posed task, performed by
perception or extrapolation by our brain based on

+** Binocular disparities: diff images from two eyes

** Monocular cues: shading, occlusion, perspectives

What can we learn in terms of 3D representation:

a perceptually motivated representation should be
a pretty good “extrapolator” over the unseen ...

4|



start w/ IM-Net: an implicit field generator

** Learn a mapping from a 3D query point (x, y, z) to inside/outside
status (= occupancy) with respect to shape boundary

3D CNN shape
encoder

(} Feature vector

point coordinates

128

ol 1]

[Chen and Zhang, CVPR 2019]

128

»H--*.a

Concatenate
——>» Copy and Concatenate
—> FC, Leaky ReLU
--—> FC, Sigmoid 9



Original shape
encoder is globa

131

2048
= 1024
[ 512
| 256
| 128
1
—> > > >| |--->O
r o Concatenate
——> Copy and Concate

—> [C, Leaky RelLU
=== FC, Sigmoid

IM-Net [Chen and Zhang, CVPR 2019]
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2048
— 1024

[ | 512
] 256

1 1 128

28 13
1
— | |— > > > |-->[]

3
> Concatenate
——> Copy and Concate

—> FC, Leaky RelLU
¢ Better to encode local features ~- FC. Sigmoid

+* Even better with specificity to query point
IM-Net [Chen and Zhang, CVPR 2019]

44



Key: encode features perceptually

** Encode point features via multi-view perception: “What does the shape

look at from various view/anchor points towards the query point (x)?”

5 :c/’.:.-. L .0.0
X % .I
) :
2 PV y s
x'_‘ \1 L] e ®
. . .:-='.“.’.’|'.'\.‘»k./.} w Y .
Anchor point g3 * e es b e s °
': e o ‘e
‘. L] L X ] r P ..
H .: o‘. \.
¢ e e
o o, Nuo'yS

ARO = Anchored Radial Observations
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Key: encode features perceptually

** Encode point features via multi-view perception: “What does the shape

look at from various view/anchor points towards the query point (x)?”

Anchor point 4

ARO = Anchored Radial Observations

Encode features of
these closest point

46



Generality and quality of reconstruction

Airplanes Rifles Animals
| “"‘»*‘%‘*"»M .ﬁ-;

. L
4 ’ T gwr oS, “'-
q f’: .;“I' wis “

GT mesh

3D Reconstruction from sparse point clouds by ARO-Net|trained on 4K chairs

\—Ill-posed task

47



An extreme example for generalizability

¢ Train with a single 3D model while attaining generalizability

ARO-Net trained on with rotation and scaling

TP
™

ARO-Net

GT mesh

Training data

ARO-Net: neural 3D reconstruction from sparse point clouds [Wang et al. CVPR 2023]



Seek 3D reps hiased’ towards the task

s Solving ill-posed tasks (e.g., sparse reconstruction) require understanding

* A “perceptual” feature representation can understand/extrapolate better

49



Completion

Point cloud v
“A curcular | ’ r_
chair”

Single image Voxels 2 ‘ ] g

An extension of ARO-Net: Masked Anchored SpHerical Distances (MASH) [Li et al. 2025]

50




** Parametric representation of MASH from a single anchor

GT Distance Function Base Mask Function Masked SH Distance Function

51



¢ Especially in the context of robotics and Embodied Al (EAI)

\/
0‘0

\/
0‘0

\/
0‘0

\/
0‘0

Many decisions are not made “on-the-fly”, but on knowledge/memory
Our brain possesses an innate spatial awareness, e.g., for navigation
Our brain also possesses cognitive awareness, e.g., for action planning

Should Al agents form similar spatial and cognitive maps too?

How do humans do these in our brains?

52



Internal GPS in human/animal brains

John O’Keefe

\/

** Nobel Prize in 2014 for understanding neural processes in the mental
representation of spatial environments to enable us to navigate

\/

** Discovery of location-aware place cells in rats in 1971

53



Internal GPS in human/animal brains

Head-direction cells give - - | Border cells
directionality ™ RN provide perimeters
of a given space

Place cells

Grid cells give
provide location 5

sense of latitude
and longitude

/

s Later works discovered other cells (e.g., speed cells) for the “internal GPS”
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https://www.youtube.com/watch?v=216r36KCE1M

** How all the cells work together? Still on-going research ...

** Dementia patients (Alzheimer's) lose these cell functions first

. Tencenr|Bwe

How billions of cells
In the brain work together?

B+ iziram
RS T hERN?

Tencent | <-WE




Science

Earth Health Physics

SciTechDaily oo o

.+ 5 Al Shows Surprising Signs ¢
ig pementia? Al Shov

logy Digital
Home Techno

- . of
Digital pDementia? Al Shows Surprising Signs

Cognitive Decline

on COMMENTS (© 4MINS READ

BY BMJ GROUP — DECEMBER 18, 2024

** LLMs exhibit signs of similar decline as
dementia patients

* Are LLMs missing these cell functions?

** Questions on representation will emerge

Age against the machine—susceptibility of large language models to cognitive
impairment: cross sectional analysis

BMJ 2024 ;387 doi: https://doi.org/10.1136/bmj-2024-081 94! (Published 20 December 2024) 7
Cite this as: BM/ 2024;387.e081948

Cognitive assessment of Al models

How leading large language generative Al models respond to The Montreal thebm’

Cognitive Assessment test

Darker red boxe 10w greater error a percenta f maximum C ver
r 1 click them to show details of

ChatGPT4 GPT-40 Claude Gemini1 Gemini 1.5

b making Pl -----

Cube copy

Clock drawing

Identifying animals

Digit span (forward and backward)

Vigilance (tapping)

Serial seven

Sentence repetition

Verbal fluency -

Common category

Free recall without cueing --

Time and place

Article DOI: 10.1136/bmj-2024-081948




¢ Our brain organizes potential
actions and outcomesin a
cognitive map, similar to the
way we navigate spaces

_How the Brain Charts Choices Before We Move. .~~~
B &7 Youlube I3

https://www.youtube.com/watch?v=o0Nc2VU6gYcw&t=8s

nature communications

Explore content v About the journal v  Publish with us v

** The closer two actions were
on this cognitive map, the s | ol Lo ooy

Hippocampal-entorhinal cognitive maps and cortical

more p art | C | p ants p erce ive motor system represent action plans and their
outcomes
t h e m a S S I m I | a r Irina Barnaveli &, Simone Vigand, Daniel Reznik, Patrick Haggard & Christian F. Doeller &

Nature Communications 16, Article number: 4139 (2025) \ Cite this article

5961 Accesses | 90 Altmetric | Metrics
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https://www.youtube.com/watch?v=oNc2VU6gYcw&t=8s

sSummary

\/

** Many representation choices were computationally motivated:
s* Low-level (rather than structural) reps make differentiability easier

* NeRF/IM-Net/OccNet/DeepSDF motivated by continuity of volume rep

» 3DGS (also Instant NGP earlier) popularized due to rendering efficiency

o0

4

1)

L)

4

1)

L)

5D Input Output
Position + Direction Color + Density
x,0,2,0,¢) > -
2048 f’ (x32,0,4) I] (RGBo) \
] 1024
M 52 - e o
] 256 S By
128 131 5l
Feature vector (7
— | |—]| |—| |— ->D
oint coordinates D | | | |
3 GAUSSIAN SPLATTING:
— Concatenate l
—> Copy and Concatenate "l

- - - — —> FC, Leaky ReLU v
=== FC, Sigmoid
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sSummary

Should consider inductive biases for 3D gen & rep learning

ARO

Human perception,
what can we learn?

n U

[Representations: perceptual }

Robot’s spatial &
cognitive map?

60
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0‘0

ARO

sSummary

°s ¥ 3 3
H HI TS Je J2

Should consider inductive biases for 3D gen & rep learning

Human perception,
what can we learn?

Function/motion

/interaction

U <>

[Representations: perceptual, interaction }

Robot’s spatial & :

MASH cognitive map?
S— g IBS/ICON

4 Ay

ATOP
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sSummary

\/

** Should consider inductive biases for 3D gen & rep learning

Human perception,
what can we learn?

Function/motion Geometry/space

/interaction

U <>

[Representations: perceptual, interaction, structural }

Robot’s spatial & :

cognitive map?
I BS / I CO N AB-rep with 7 surface primitives Ours 62

ARO




sSummary

© Inductive biases improve generalizability and alleviate data scarcity
& But the assumptions/priors can also be limiting at the same time
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sSummary

< Functional inductive biases covered are still implicit, e.g.,

o/

** Neural representations of object-object interactions

o/

** Learning structured representations: a necessity but not exactly the same

o/

** Motion priors from video foundational models: realization of functions

& Differentiable functionality loss for 3D generation still elusive
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sSummary

Robots opening everything and
acquiring both exteriors and interiors

& Goal: learn structured, text-grounded, motion-enabled 3D representations
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summary

& Build foundation models with spatial intelligence, encompassing 3D, text,
& image, beyond Q&A and NTP, to do things in physical worlds
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