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Motivation: Gap Between Methodology and Applications

Methods

Real-world applications
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CAD Reconstruction [3]
mpu( AT, ,.» ,,_ ?‘/“

GDQ\/

Semantic Segmentation [6]

edaesinan
{ li
N
N
L
N

Surface Reconstruction [2]

@‘nt -'v
‘ \ B

Registration [4] 3D Clothing [5]
Generative Modeling [7]

K EEL L 2L

Entertainment

A 3D Modeling l )




Motivation: Gap Between Methodology and Applications

Methods Real-world applications
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3D Modeling is Expensive
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3D Generative Modeling Goals
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Plan for Today

WO major topics:
. Generative Modeling for 3D Objects

. Generative Modeling for indoor 3D Scenes

g-Based 3D Room A
Generation

Physicalty-aware Generative Netwoek for 3D Shape Modeling Physical Simulation Layer for Accurate 3D Modeling
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Overall Goal

Endow generative networks biases to promote connectivity and physical stability.

Input

_

Output

Input

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling,” CVPR 2021.

Connectivity

Output

Physical stability

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.




Why connectivity and physical stability ?

« Frequent cause of failures

* Represent a shared functional requirement across
different shape categories

« Physical stability has proved beneficial for boosting
many computer vision and graphics tasks.

3D printing [1] Scene segmentation [2] 3D reconstruction [3]

[1] Make It Stand: Balancing shapes for 3D fabrication, Prévost et al., ACM SIGGRAPH, 2013.
[2] Beyond point clouds: Scene understanding by reasoning geometry and physics? Zheng et al,, CVPR, 2013
[3] Learning to exploit stability for 3d scene parsing.. Du et al., NeurIPS, 2018



Method — Overview
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M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.
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[1] A topology layer for machine learning, Gabrielsson et al., PMLR, 2020
[2] Topological Function Optimization for Continuous Shape Matching, Poulenard et al., CGF, 2018 10
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[1] A topology layer for machine learning, Gabrielsson et al., PMLR, 2020
[2] Topological Function Optimization for Continuous Shape Matching, Poulenard et al., CGF, 2018
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Physical Stability Loss via a Surrogate Model Nm.m,._, Lo

Stability
lI! probability

Latent vectors

Stable=1 Unstable=0

Lstap = max(l —V(f),a);a=0.5

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021. 12



Learning Framework
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of the generated content since the latent space of

objects is unchanged.
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Learned latent space of shapes

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.



Results: Shape Generation

IM-Net [1] based model PQ-Net [2] based model

Topological

[1] IM-NET: Learning implicit fields for generative shape modeling. Chen et al., CVPR, 2019
[2] PQ-NET: A generative part Seq2Seq network for 3D shapes. Wu et al., CVPR, 2020



Results: Shape Correction

IM-Net based model PQ-Net based model

Baseline Input

Ours

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.



Offline vs Online Simulation

Offline simulators

=fl= Easy-to-use and mature

== Non-differentiable: need to be combined
with gradient approximation methods
(instability of numerical gradients).

Our contribution:

* Build a differentiable point-based physical
simulator

 Learn generative network DeepSDF [1]
with online physical simulation.

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.



Differentiable simulator W

We build a differentiable simulator W Iy
using the DiffTaichi [1] framework : i e
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Y(C)={(ppre);t € [1L,T

DiffTaichi naturally supports simulation
of a point cloud € . We simulate p,; and r:
the position and the rotation of € center of
mass during simulation.

[1] DiffTaichi: Differentiable Programming for Physical Simulation.
Hu et al., ICLR, 2020

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.



Learning Framework

Auto-decoder

Noise

Latent
Vector

g——
fo

\

[1Learnable parameters

Simulation Layer SimL

Surface points

Simulator W

We train the auto-decoder by jointly optimizing a reconstruction and stability-based losses:

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.
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Results: Shape Optimization

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.



Shape Optimization

StructureNet [1]

AtlasNet [2]

[1] StructureNet: Hierarchical graph networks for 3d shape generation. Mo et al., SIGGRAPH Asia, 2019
[2] AtlasNet: A Papier-Mache approach to Learning 3D Surface Generation. Groueix et al., CVPR, 2018
[3] Dualsdf: Semantic shape manipulation using a two-level representation. Hao et al., CVPR, 2020

DualSDF [3]




Shape Reconstruction
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Ground truth

‘ DeepSDF ‘

DeepSDF +
Offline Simulation

Phys-DeepSDF
(ours)

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.
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Task: Controllable 3D Indoor Scene Synthesis

Goal

Floor plan Furnished scene Basic Pipeline

N

Semantic 3D Furnished 3D
Layout Scene

Floor Plan

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024. 23



Motivation: Controllable 3D Indoor Scene Synthesis

B Challenges

Object Parametrization
* Inherent complexity of object interactions.

* Requirement to fulfill spatial, ergonomic and
functional constraints.

dimensional space
* Limited amount of training data. ﬁ
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Denoising in a high-

 Existing methods are either autoregressive or use

diffusion models for all object attributes jointly Shape code f; € R
| | l Mixing spatial and
: i - & ; ' Object Feature - semantic features
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Tang et al. DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis, in CVPR 2024 24



Our Approach: Separating Geometry and Semantics
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L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.



How to obtain the conditioning signal?

Input set of object categories can be provided by external sources such as a LLM [3].

Alternatively, we propose a Self Score Evaluation (SSE) to select the sets that lead to
the most realistic scenes. SSE uses density estimation with a trained model.

Objects Semantic Generation

sofa, ..., dining table
LLMs [ J ]

Templates

sajepipue)

[stool, ..., TV stand]

(Buiuonipuo))
3SS + vyeged

[3] Feng et al. LayoutGPT: Compositional Visual Planning and Generation with Large Language Models, in NeurIPS 2023
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How to obtain the conditioning signal?

Candidate sets of object categories can be automatically generated by a LLM, and using
SSE, further to generate a plausible 3D layout, or automatically discarded.
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Top-down view of scenes generated by DeBaRA from LLM-generated candidates and their
associated SSE scores.

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024. o7



Many Possible Applications

A single pre-trained model can be used for several downstream applications.

[ 3D Layout Generation Scene Re-Arrangement Optimal Retrieval ]
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L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.
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Results — 3D Layout Generation, Synthesis, and Re-arrangement

Improved Accuracy in 3D Layout Generation, Scene Synthesis, and Re-arrangement.
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L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.

DiffuScene

"
= B
w%

DeBaRA

Living Rooms
FID () KID({) SCA (%)

Methods

LayoutGPT [] 35.53 13.69 72.8

ATISS [11] 25.67 8.91 71.8
DiffuScene [ 1]  21.54 6.40 69.7
DeBaRA (ours) 18.89 3.57 68.3
Dining R
Methods ning Zooms
FID(]) KID() SCA (%) § OBA({)

LayoutGPT [] 32.80 8.99 67.6
ATISS [11] 28.05 9.26 63.2
DiffuScene [~ ] 23.06 5.35 57.7
DeBaRA (ours) 22.04 4.41 524

Especially strong improvement
in physical consistency.
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