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Motivation: Gap Between Methodology and Applications
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3D Modeling is Expensive

4Image source: The Next Leap: How A.I. will change the 3D industry - Andrew Price



3D Generative Modeling Goals
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Plan for Today

Two major topics:

1. Generative Modeling for 3D Objects

2. Generative Modeling for indoor 3D Scenes
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Endow generative networks biases to promote connectivity and physical stability.

Input Output Input Output

Connectivity Physical stability

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Overall Goal

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.



• Frequent cause of failures

• Represent a shared functional requirement across 
different shape categories

• Physical stability has proved beneficial for boosting 
many computer vision and graphics tasks.

 

3D printing [1] Scene segmentation [2] 3D reconstruction [3]

[1] Make It Stand: Balancing shapes for 3D fabrication, Prévost et al., ACM SIGGRAPH, 2013.
[2] Beyond point clouds: Scene understanding by reasoning geometry and physics? Zheng et al., CVPR, 2013 
[3] Learning to exploit stability for 3d scene parsing.. Du et al., NeurIPS, 2018

Example functional failures

Why connectivity and physical stability ?



M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Method – Overview 
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Method
Differentiable Connectivity Loss via Persistent Homology

𝝀-isosurface extraction

𝒇: an implicit function
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[1] A topology layer for machine learning, Gabrielsson et al., PMLR, 2020
[2] Topological Function Optimization for Continuous Shape Matching, Poulenard et al., CGF, 2018
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Method
Physical Stability Loss via a Surrogate Model

Neural stability predictor Stability 
probability

Stable = 1 Unstable = 0

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Latent vectors



;

Learned latent space of shapes

Training stages:

1. Train a generative network 𝐺

2. Freeze 𝐺 and train a mapping network Φ

Motivation: preserve the diversity and quality 

of the generated content since the latent space of 

objects is unchanged. 

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Learning Framework



IM-Net [1] based model PQ-Net [2] based model 
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[1] IM-NET: Learning implicit fields for generative shape modeling. Chen et al., CVPR, 2019
[2] PQ-NET: A generative part Seq2Seq network for 3D shapes. Wu et al., CVPR, 2020

Results: Shape Generation
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IM-Net based model PQ-Net based model 

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Results: Shape Correction



Non differentiable simulator (e.g., PyBullet)

Our contribution: 

• Build a differentiable point-based physical 
simulator 

• Learn generative network DeepSDF [1] 
with online physical simulation. 

Offline simulators

• Easy-to-use and mature

• Non-differentiable: need to be combined 
with gradient approximation methods 
(instability of numerical gradients).

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.

Offline vs Online Simulation



DiffTaichi naturally supports simulation 
of a point cloud 𝓒 . We simulate 𝒑𝒕 and 𝒓𝒕: 
the position and the rotation of 𝓒 center of 
mass during simulation.

We build a differentiable simulator 𝚿 
using the DiffTaichi [1] framework : 

[1] DiffTaichi: Differentiable Programming for Physical Simulation.  
      Hu et al., ICLR, 2020

Ψ(𝓒)={ pt, rt ; t ∈ [1, T]}

Differentiable simulator Ψ

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.



M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.

Learning Framework

We train the auto-decoder by jointly optimizing a reconstruction and stability-based losses: 



Input shape Closest train shapeOptimization OutputPhysical optimization

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.

Results: Shape Optimization



StructureNet [1] AtlasNet [2]

[1] StructureNet: Hierarchical graph networks for 3d shape generation. Mo et al., SIGGRAPH Asia, 2019
[2] AtlasNet: A Papier-Mache approach to Learning 3D Surface Generation. Groueix et al., CVPR, 2018
[3] Dualsdf: Semantic shape manipulation using a two-level representation. Hao et al., CVPR, 2020

DualSDF [3]

Shape Optimization



Ground truth

DeepSDF

Phys-DeepSDF
(ours)

DeepSDF +
Offline Simulation

M. Mezghanni, et al. "Physical simulation layer for accurate 3d modeling," CVPR 2022.

Shape Reconstruction



DeBaRA: Denoising-Based 3D Room 

Arrangement Generation

Léopold Maillard1,2, Nicolas Sereyjol-Garros, Tom Durand2, Maks Ovsjanikov1

1LIX, École Polytechnique, IP Paris 2Dassault Systèmes
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Task: Controllable 3D Indoor Scene Synthesis 

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.

Floor plan Furnished scene

Synthesis

Floor Plan
Semantic 3D 

Layout

Retrieval

Furnished 3D 
Scene

Basic Pipeline

Goal



Off-the-shelf Diffusion

Challenges

• Inherent complexity of object interactions.

• Requirement to fulfill spatial, ergonomic and 
functional constraints.

• Limited amount of training data.

Background

Tang et al. DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis, in CVPR 2024 

• Existing methods are either autoregressive or use 
diffusion models for all object attributes jointly

24

Autoregressive

Motivation: Controllable 3D Indoor Scene Synthesis 

Denoising in a high-
dimensional space

Mixing spatial and 
semantic features
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Our Approach: Separating Geometry and Semantics

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.

Key idea: 
Only denoise the 
spatial features. Treat 
the semantic features 
(object categories) as 
conditioning.

Architecture
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How to obtain the conditioning signal?

Input set of object categories can be provided by external sources such as a LLM [3]. 

Alternatively, we propose a Self Score Evaluation (SSE) to select the sets that lead to 
the most realistic scenes. SSE uses density estimation with a trained model.

LLMs
Templates

…

[sofa, … , dining table]

[stool, … , TV stand]

…

Objects Semantic Generation
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[3] Feng et al. LayoutGPT: Compositional Visual Planning and Generation with Large Language Models, in NeurIPS 2023
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How to obtain the conditioning signal?

Candidate sets of object categories can be automatically generated by a LLM, and using 
SSE, further selected to generate a plausible 3D layout, or automatically discarded.
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Top-down view of scenes generated by DeBaRA from LLM-generated candidates and their 
associated SSE scores.

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.
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Many Possible Applications

A single pre-trained model can be used for several downstream applications.

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.



Improved Accuracy in  3D Layout Generation, Scene Synthesis, and Re-arrangement. 

ATISS DiffuScene DeBaRA
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Results – 3D Layout Generation, Synthesis, and Re-arrangement

L. Maillard, et al. “DeBaRA: Denoising-Based 3D Room Arrangement Generation,” NeurIPS 2024.

Especially strong improvement 
in physical consistency.



Questions?

Acknowledgements:
M. Mezghanni, L. Maillard, M. Boulkenafed, …
Work supported by the ERC Starting Grant StG-2017-758800 (EXPROTEA), 
ERC Consolidator VEGA and the ANR AI Chair AIGRETTE.

Thank You
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