Towards More Physically Plausible Generative Models

CVPR 2025 Workshop:

Ind3D: Enforcing Inductive Bias in 3D Generation from Geometric, Physical, Topological, and Functional Perspectives

Maks Ovsjanikov

Joint work with: M. Mezghanni,, M. Boulkenafed, L. Maillard, T. Durand, ...

Motivation: Gap Between Methodology and Applications

Motivation: Gap Between Methodology and Applications

3D Modeling is Expensive

3D Generative Modeling Goals

Realism

Image source: Evermotion

Data Efficiency

Controllability

Image source: Objaverse-XL

Source: Ugur Ulvi Yetiskin

Plan for Today

Two major topics:

- 1. Generative Modeling for 3D Objects
- 2. Generative Modeling for indoor 3D Scenes

Mariem Mezghanni		Physically-aware Generative Network for 3D Shape Modeling Marion Meghani ¹⁰ Multia Builtmond And Liserier Multi Osipaskov ⁴ LK, Exole Physicalization of providing of the state of the st	Physical Simulation Layer for Accurate 3D Modeling Marine Merghansi Thie Bodensi Malika Boschenarde Maka Orajantion ¹ ¹ Lick Folter Deformations, IP Pris menjamana and and an antipatient and an antipatient and and an antipatient and	DeBaRA: Denoising-Based 3D Room Arrangement Generation Logist Multuri ³ Nodus Sarojd Garwa [*] Tam Durant ³ Maka Onjatkan ⁴ ¹ UK facts Phytochegan D'Brin [*] (Pannash Synthese (satistizet analytic) spiryressigners for (Unrease standard Uble on Datase
Léopold Maillard		The Thermoson is an entrance matrix the product matrix the product of the produc	<text><section-header><section-header><image/></section-header></section-header></text>	comparing a start depresentation may be a start index of the direct the three starts are started as a start of the start index of the start ind
		I She provide the strategistic product of the strategis	which denotes that denotes the theorem of the strength denotes the stren	Sense used of generating radiatic environments comprising multiple interacting adjusts would impact averal indexet is sublading while agare, sub-Cox, sugnesses and winait multiply (ANPP) of the subset of the s

CVPR 2021

CVPR 2022 (Oral)

NeurIPS 2024

Overall Goal

Endow generative networks biases to promote **connectivity** and **physical stability**.

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Why connectivity and physical stability ?

- Frequent cause of failures
- Represent a shared functional requirement across different shape categories
- Physical stability has proved beneficial for boosting many computer vision and graphics tasks.

Example functional failures

3D printing [1]

Scene segmentation [2]

3D reconstruction [3]

[1] Make It Stand: Balancing shapes for 3D fabrication, Prévost et al., ACM SIGGRAPH, 2013.[2] Beyond point clouds: Scene understanding by reasoning geometry and physics? Zheng et al., CVPR, 2013[3] Learning to exploit stability for 3d scene parsing. Du et al., NeurIPS, 2018

Method – Overview

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Differentiable Connectivity Loss via Persistent Homology

 P_f^{λ}

 $\rightarrow \mathcal{L}_{conn}$

 $\rightarrow \mathcal{L}_{stab}$

Topology

Neural Stability

Predictor

Layer

Method

Differentiable Connectivity Loss via Persistent Homology

[1] A topology layer for machine learning, Gabrielsson et al., PMLR, 2020[2] Topological Function Optimization for Continuous Shape Matching, Poulenard et al., CGF, 2018

 P_f

Topology Layer

Neural Stability

Predictor

 $\rightarrow \mathcal{L}_{conn}$

 $\rightarrow \mathcal{L}_{stab}$

Method

Physical Stability Loss via a Surrogate Model

$$\mathcal{L}_{stab} = max(1 - \Psi(f), \alpha); \alpha = 0.5$$

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Learning Framework

Training stages:

- 1. Train a generative network *G*
- 2. Freeze *G* and train a **mapping network** Φ

Motivation: preserve the diversity and quality of the generated content since the latent space of objects is unchanged.

$$\mathcal{L}_{reg}(z) = \|z - \Phi(z)\|_{2}; \ \mathcal{L}_{total} = \mathbb{E}_{z \in \mathcal{V}} \left[\mathcal{L}_{reg} + \alpha_{c} \mathcal{L}_{conn} + \alpha_{s} \mathcal{L}_{stab} \right]$$

Learned latent space of shapes

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Results: Shape Generation

[1] IM-NET: Learning implicit fields for generative shape modeling. Chen et al., CVPR, 2019[2] PQ-NET: A generative part Seq2Seq network for 3D shapes. Wu et al., CVPR, 2020

Results: Shape Correction

M. Mezghanni, et al. "Physically-aware generative network for 3d shape modelling," CVPR 2021.

Offline vs Online Simulation

Offline simulators

Easy-to-use and mature

Non-differentiable: need to be combined with gradient approximation methods (instability of numerical gradients).

Our contribution:

- Build a **differentiable** point-based physical simulator
- Learn generative network DeepSDF [1] with **online physical simulation**.

Non differentiable simulator (e.g., PyBullet)

Differentiable simulator Ψ

We build a **differentiable simulator** Ψ using the **DiffTaichi** [1] framework :

 $\Psi(\mathcal{C}) = \{(\mathbf{p}_t, \mathbf{r}_t); t \in [1, T]\}$

DiffTaichi naturally supports simulation of a **point cloud** C. We simulate p_t and r_t : the *position* and the *rotation* of C center of mass during simulation.

[1] DiffTaichi: Differentiable Programming for Physical Simulation. Hu et al., ICLR, 2020

Learning Framework

We train the auto-decoder by jointly optimizing a reconstruction and stability-based losses:

$$\mathcal{L} = \mathcal{L}_r + \alpha_s \mathcal{L}_s$$

Results: Shape Optimization

Shape Optimization

[1] StructureNet: Hierarchical graph networks for 3d shape generation. Mo et al., SIGGRAPH Asia, 2019
[2] AtlasNet: A Papier-Mache approach to Learning 3D Surface Generation. Groueix et al., CVPR, 2018
[3] Dualsdf: Semantic shape manipulation using a two-level representation. Hao et al., CVPR, 2020

Shape Reconstruction

Depart: Denoising-Based 3D Room Arrangement Generation

Léopold Maillard^{1,2}, Nicolas Sereyjol-Garros, Tom Durand², Maks Ovsjanikov¹

¹LIX, École Polytechnique, IP Paris ²Dassault Systèmes

NeurIPS 2024

Task: Controllable 3D Indoor Scene Synthesis

Motivation: Controllable 3D Indoor Scene Synthesis

Challenges

- Inherent complexity of object **interactions**. •
- Requirement to fulfill spatial, ergonomic and functional constraints.
- Limited amount of **training data**.

Background

Existing methods are either **autoregressive** or use diffusion models for all object attributes jointly

Autoregressive

Off-the-shelf Diffusion

Object Parametrization

Denoising in a highdimensional space

Mixing spatial and semantic features

Our Approach: Separating Geometry and Semantics

L. Maillard, et al. "DeBaRA: Denoising-Based 3D Room Arrangement Generation," NeurIPS 2024.

How to obtain the conditioning signal?

Input set of object categories can be *provided* by external sources such as a LLM [3].

Alternatively, we propose a Self Score Evaluation (SSE) to select the sets that lead to the most realistic scenes. SSE uses density estimation with a trained model.

[3] Feng et al. LayoutGPT: Compositional Visual Planning and Generation with Large Language Models, in NeurIPS 2023

How to obtain the conditioning signal?

Candidate sets of object categories can be automatically generated by a LLM, and using SSE, further **selected** to generate a plausible 3D layout, or automatically **discarded**.

Top-down view of scenes generated by DeBaRA from LLM-generated candidates and their associated SSE scores.

Many Possible Applications

A single pre-trained model can be used for several downstream applications.

L. Maillard, et al. "DeBaRA: Denoising-Based 3D Room Arrangement Generation," NeurIPS 2024.

Results – 3D Layout Generation, Synthesis, and Re-arrangement

Improved Accuracy in 3D Layout Generation, Scene Synthesis, and Re-arrangement.

L. Maillard, et al. "DeBaRA: Denoising-Based 3D Room Arrangement Generation," NeurIPS 2024.

Thank You

Questions?

Acknowledgements:

M. Mezghanni, L. Maillard, M. Boulkenafed, ... Work supported by the ERC Starting Grant StG-2017-758800 (EXPROTEA), ERC Consolidator VEGA and the ANR AI Chair AIGRETTE.

