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Things Neural Nets Should Know



● Representation shaping: Distill knowledge 
into the neural representation

● Network shaping: Distill knowledge into the 
neural architectures that use the 
representation
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Things Neural Nets Should Know

Point Cloud 3D Rotation Equivariance

Mutual Information Grouping in NeRFs and GSs
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Enforcing Classic Invariance 
and Equivariance for 3D 

Objects and Scenes
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Geometry with Coordinates

René Descartes
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Geometry without Coordinates

Euclid



• Geometric data is almost always given to us in a particular coordinate system.

• In many settings this frame or pose aspect of the presentation needs to be 
disentangled from the intrinsic data geometry, as it may be a nuisance factor.

• Depending on the application, this variation is captured by a transformation 
group that may include translation, rotation, scale, etc.
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Factors of 3D Variation

P



• Typical neural networks are trained on co-aligned collections of shapes

• Such networks do not generalize to objects in arbitrary poses
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Learning on Geometric Shapes

Neural 
Network

“chair”

Neural 
Network

“???”



Key Requirement: Invariance and Equivarience

segmentation

airplane

classification reconstruction

invariant equivariant
(or invariant, depending 
on data representation)

equivariant encoder
invariant decoder

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)]
[J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019]



We say a neural network              is rotation equivariant, if for any 3D 
rotation                      applied to its input    , it is explicitly related to a 
transformation            on the network output satisfying

•            should be independent of

• Special case: when                      is the identity 
mapping, it is the common-sense “equivariance”

• Special case: when                      is the identity 
mapping, it is invariance

In/Equivariance



A Naïve Solution: Data Augmentation

Apply random rotations to the training data

So we let the network “see” and learn from all possible poses

• Reducing the generalization gap – but not eliminating it

• Sacrificing data-efficiency – longer training time

• Statistically equivariant/invariant – not guaranteed
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Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, Leonidas Guibas, 
ICCV‘21

Vector Neurons for SO(3) 
Equivariance



Classical (scalar) feature                                                     , with 

Vector-list feature                                                          , with

• For pointcloud with 𝑁 points

Scalar vs Vector Neurons

(classical)
scalar neurons

vector neurons

Mapping between network layers:

Equivariance to rotation                     :



Classical Neuron: scalar channels

Vector Neuron: 3D vector channels

Expressing Transformations in the Latent Space

feature

feature

A network whose latent space understands rigid transformations



Vector Neuron Features for Point Cloud

Classical:

VN:

feature

feature



Linear operator: left multiply by the learnable weight matrix

Vector Neuron Linear Operations

feature

Equivariance: right multiply by the SO(3) rotation matrix

featureweight

feature featureweight



Vector-list feature

Linear operator                      with learnable weights                         :

Equivariance to rotation                     :

•      - left multiplication,     - right multiplication

• Note the absence of a bias term

VN Linear Layer



direction 𝒌 direction 𝒌

feature 𝒒

feature 𝒒

unchanged clip!

Vector Neuron ReLU Non-Linearity



Rectified Linear Unit: VN Non-Linearity

ReLU Non-Linearity

Weights                      and

Learn a feature

Learn a direction

For each output vector neuron

direction 𝒌 direction 𝒌
feature 𝒒

feature 𝒒

unchanged clip!

[Also works for uniform scaling]



VN Non-Linearity: A High-d ReLU

Learnable ReLU Non-Linearity

• Non-linear layer (with built-in 
linear layer)

= input linear transformation    + 
non-linearity 

• Other non-linearities
directions 𝒌

features 𝒒

learnable 
nonlinearities

overall structure



A network layer

linear 
layer

non-
linearity

Network Layer: Scalar Network



A network layer

VN linear 
layer

VN non-
linearity

direction 𝒌

feature 𝒒

Network Layer: Vector Network



Vector Neuron Features for Point Cloud

Classical:

VN:

feature

feature



Vector Neuron Pooling

✓Mean pooling

?  Max pooling
• (Similar to non-linearity)

• argmax alone learned directions

direction 𝒌

input 𝒗

direction 𝒌

input 𝒗

VN-
Linear

input

= argmax  , 

directions output input



✓LayerNorm

✓InstanceNorm

✓Dropout

? BatchNorm

averaging across 

arbitrarily rotated 

inputs would not 

necessarily be 
meaningful

Vector Neuron Normalizations

B B B
C C CN N N

LayerNorm BatchNorm InstanceNorm

B B B

N N N
3C 3C 3C

LayerNorm BatchNorm InstanceNorm

(classical) scalar neurons

Vector neurons



Vector Neuron Normalizations

BatchNorm

• Normalize the 2-norm (invariant component) of the vector-list 
feature

• Element-wise norm: 2-norm for each vector



From Equivariance to Invariance

(equivariant feature) × (equivariant feature)T = (invariant feature)

T

input

output



Vector Neuron Invariant Layer

Specifically…

T

input

output

copy

equivariant 
coordinate 

system
canonicalized 

feature



• Product of an equivariant signal                     by the transpose of 
another equivariant signal                       → invariant signal

• Special case:                       - an equivariant coordinate system

• For pointcloud, concatenate local feature                      with global 
mean

Invariant layer:

Vector Neuron Invariant Layer
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Vectorize Classical 3D 
Networks: DGCNN, PointNet



[Wang et al., TOG 2019]

DGCNN alternates feature learning (EdgeConvs) and graph NN reconstruction

𝑠𝑖

𝑠𝑖0

𝑠𝑖1

𝑠𝑖2

𝑓𝜃(𝑒𝑖0
)

𝑓𝜃(𝑒𝑖1
)

𝑓𝜃(𝑒𝑖2
)

𝑠𝑖

𝑠𝑖0

𝑠𝑖1

𝑠𝑖2

𝑓𝜙(𝑒𝑖0
)

𝑓𝜙(𝑒𝑖1
)

𝑓𝜙(𝑒𝑖2
)

Dynamic Graph CNN (DGCNN)
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DGCNN Architecture: Alternating Processing

EdgeConv: Edge Convolutions
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Dynamic Graph CNN (DGCNN)



DGCNN

VN-DGCNN

Build VN Networks: VN-DGCNN

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]

Edge feature:

Aggregation:

Edge feature:

Aggregation
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Deep Architectures: PointNet and PointNet++



PointNet

VN-PointNet

Build VN Networks: VN-PointNet

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]
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Experiments of VN Use

Train

Test

z/z                                    z/SO(3)                        SO(3)/SO(3)

Figure: By BorisFromStockdale, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=646939
Figure: https://quantum-journal.org/papers/q-2020-06-22-285/



Results on ModelNet40

38

Classification

VN Networks

Rotation sensitive 
methods

Rotation robust 
methods



Results on ModelNet40 (%)
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Classification

• VN networks are robust to 
(seen & unseen) rotations

• Excellent performance 
compared with other methods

• SO(3)/SO(3): equivariance by 
construction is better than 
rotation augmentation



Results on ShapeNet (mIoU)

40

Part Segmentation

• Similarly…

VN Networks

Rotation sensitive 
methods

Rotation robust 
methods



OccNet

VN-
OccNet

z/z                  z/SO(3)          SO(3)/SO(3) 

Vanilla OccNet:
Can’t learn rotated 
shapes even when 
trained with 
augmentation

VN-OccNet:
Consistent across 
rotations

Neural Implicit Reconstruction

Results on ShapeNet (Examples)



Neural Implicit Reconstruction

Results on ShapeNet (Examples)

OccNet

VN-
OccNet

z/z                  z/SO(3)          SO(3)/SO(3) 

Vanilla OccNet:
Blurry shapes



43

Applications of Vector Neurons



 EFEM
Equivariant neural Field Expectation Maximization

for 3D Object Segmentation Without Scene Supervision

CVPR 2023



ShapeNet Real Scenes



VN 

Encoder Φ 

SDF 

Decoder Ψ

ϴinv

ϴR

ϴs

ϴt

Query 

coordinate

SDF

Input Object Point 

Cloud
SIM(3) Equivariant Shape Prior

Output meshes follow input transformations



E-M iterative refinement



Chairs and Mugs



EquivAct: SIM(3)-Equivariant Visuomotor Policies 
beyond Rigid Object Manipulation

Jingyun Yang1* Congyue Deng1* Jimmy Wu2 Rika Antonova1 Leonidas Guibas1 Jeannette 
Bohg1

Stanford University1 Princeton University2

NeurIPS 2023



appearance
scales
poses

QUESTION ADDRESSED IN THIS WORK

How can robots learn from a few example trajectories and generalize 
to scenarios with unseen visuals, scales, and poses?



Cloth Folding Object Covering Box Closing



Cloth Folding Object Covering Box Closing



Applications in Robot Manipulation
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Learned Priors: Semantic 
Structure and Compositionality 

in 3D Scenes
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Neural Radiance Fields (NeRFs) for 3D Scenes

iNGP

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2021).
NeRF: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1), 99-106.

Müller, T., Evans, A., Schied, C., & Keller, A. (2022).
Instant neural graphics primitives with a multiresolution hash encoding.
ACM Transactions on Graphics (ToG), 41(4), 1-15.



Gaussian Scene Representations: Gaussian Splatting

[From: A Comprehensive Overview of Gaussian 
Splatting3D Gaussian Splatting for Real-Time 
Radiance Field Rendering]



GS Reps (and NeRFs, too) are Unstructured

Just millions of individual Gaussians…

How can structure them?

How can we manipulate the scene at the 

object / entity level?
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NeRFs / GSs with Semantic Channels

Sosuke Kobayashi, Eiichi Matsumoto, Vincent Sitzmann. 
Decomposing NeRF for Editing via Feature Field Distillation. 
NeurIPS 2022

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, Andrew J. Davison.
In-Place Scene Labelling and Understanding with Implicit Scene Representation.
ICCV 2021.

Semantic NeRF
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NeRF Shaping with Sparse 
Semantic Supervision

Xiamen Xu, Yanchao Yang, Kaichun Mo, Boxiao Pan, Li Yi, Leonidas Guibas. 
JacobiNeRF: NeRF Shaping with Mutual Information Gradients
 (CVPR 2023).



● In typical NeRF training, we supervise via pixel values in views (1st order info):

○ this pixel’s color is red …

○ this pixel’s semantics is “car” …

● But we can also supervise with value relationships (2nd order info)

○ these two pixels should have the same entity ID …

● Semantics / composition can be implicitly encoded in the correlations, or mutual 

information, between pixels

● How can we directly encode into the neural representation semantic correlations? 

– the NeRF variation space
60

Supervision for NeRFs: 1st Order vs 2nd Order
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An Indoor Scene

Understand how the scene is, and how it could be …



The Compositional Structure of a Scene is Reflected in its Variations

The scene semantic variations: 
tangent space

this chair has moved the table became longer the table became darker



Mutual Information and 2nd Order Relationships

C

A

B

Y
X

Z

A is more correlated with B than with C

X is more correlated with Y than with Z
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NeRF Variation Space Through its Parameters

Key Idea: Operate on the NeRF to modify its weights, so as to align 
the scene semantic variation space with the NeRF parametric 
variations

“Jiggle” the neuron weights of the NeRF

Unfortunately, these variations are not
semantically meaningful

“NeRF Shaping”

NeRF Operators
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Shaping Neural Representations

The Hebbian hypothesis:

Neurons that fire together, wire together

Donald O. Hebb
1904-1985

Can we build neural scene representations that better reflect 
mutual information correlations in the scene?

Create “neuronal resonances” through
contrastive supervision

𝕀(A,B) > 𝕀(A,C)

𝕀(X,Y) > 𝕀(X,Z)

Mutual information

https://en.wikipedia.org/wiki/Hebbian_theory
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Mutual Information via NeRF Gradients

Inter-pixel correlations are captured by cosine similarity of the 
NeRF Jacobians

Mutual information

D = set of parameters selected for shaping
n = noise added
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NeRF Mutual Information Shaping 

Setting up Semantic “Neuronal Resonances” for Correlated Pixels through Contrastive 
Learning

These pixels should co-vary

But these should not

Shaping co-aligns gradients of correlated 
pixels (here points of the same semantic class)Use DINO features  

(alternatively, LSeg-CLIP)
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JacobiNeRF (J-NeRF): Shaping via Mutual Information Jacobians

Carl Gustav Jacob Jacobi

1804-1851

Apply gradient shaping on pixel gray scale values
(last three layers of RGB branch)

D



Use DINO features for contrastive learning

64 batches of 64 rays/pixels across all views, or

64 batches of 64 rays/pixels all in one view

Gradients are on pixel gray level

InfoNCE loss

69

Lightweight Contrastive Training Regimen (After Photometric)

Exploit Autograd for
gradients

Resonances are transitive ….



Use NOCS to lift 2D pixels to 3D points.
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2D vs 3D Shaping

Shaping can be applied to either 2D (J-NeRF 2D) or 3D (J-NeRF 3D)
network gradients

3D

2D

NOCS (x, y, z) coordinates rendered as RGB
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After shaping:

From a single pixel 
we can select an 
entire semantic 
entity.

Image View Unshaped NeRF Shaped NeRF



NeRF re-coloring after shaping

Shape NeRF by aligning grey scale gradients of correlated pixels/points [same as 
before].

Calculate separate R, G, B gradients; select one pixel in one view and push the 
network parameters along these gradients to reach a desired color value at that 
pixel.

All “resonating” pixels in this and other NeRF views get also automatically 
recolored …
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Re-coloring via Resonances



Ceiling re-colored 
(yellow, blue)



Walls re-colored 
(yellow, blue)



Windows re-colored 
(yellow, blue)



2D version (JacobiNeRF-2D):

for each labeled pixel

● perturb the NeRF along the gradient of the gray value of that pixel (e.g., 
change the network parameters)

● synthesize the target view from the perturbed NeRF

● calculate the perturbation response at each pixel for every source

● assign in target view pixels to the class generating the maximal response 
(argmax)
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Info Propagation Through Resonances in Views

Make a move See who follows



Semantic Segmentation (sparse, Replica)
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J-NeRF 3D Semantics
Propagation

Given label Regenerated view



Semantic Segmentation (sparse, ScanNet)
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J-NeRF 3DGiven label



Semantic Segmentation (dense, Replica)

J-NeRF 3DGiven label



Semantic Segmentation (dense, Replica)

J-NeRF 3DGiven label



mIoU Acc

Semantic Segmentation (sparse 1pix/class, Replica)



Semantic Segmentation (1 view, dense labels, Replica)

mIoU Acc
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Light Supervision for Structure 
Emergence in Gaussian Fields

InfoGaussian: Structure-Aware Dynamic Gaussians through Lightweight 
Information Shaping. Yunchao Zhang, Guandao Yang, Leonidas Guibas, Yanchao 
Yang. ICRL 2025.



Static Scene Reconstruction with Gaussian Splatting



85

SAM “Segment Anything” 2D Dense Instance Supervision

Gaussian Grouping: Segment and Edit 
Anything in 3D Scenes. Mingqiao Ye, 
Martin Danelljan, Fisher Yu, Lei Ke.



GS Network Shaping for Object Motion
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Pixels in the Same Mask Have High Mutual Information (MI)

They are likely to 

change in correlated 

ways, as objects 

move.



1. Use pretrained vision model (SAM) to generate 2D masks.

2. Label the 3D masks of Gaussians by 2D masks of the pixel.

3. Conduct contrastive learning for mutual information shaping. 

Correlation Shaping on Attribute Decoding
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Object Motion Without Explicit Grouping

MotionMLP

rendered.mp4

http://drive.google.com/file/d/14r3IUa5bnoOB5QOuADvFKxURT6yPXRbI/view
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Motion MLP Gradient Alignments

Aligning MLP gradients via contrastive 

learning, to force high MI correlations
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Experiment (Mips-NeRF 360 Scene)
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Resonances

~7,900 Gaussians in the 
bulldozer

~460 participated in the 
contrastive training
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Experiment (Mips-NeRF 360 Scene)

Post-Shaping
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Experiment (Mips-NeRF 360 Scene)

Post-Shaping
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Experiment (LeRF Scene)



96

Resonances
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Experiment (LeRF Scene)

Post-Shaping
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Experiment (LeRF Scene)

Post-Shaping
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Resonances
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Experiment (LeRF Scene)



101

Resonances
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Experiment (LeRF Scene)

Post-Shaping



● Vector Neurons:

Lift latent features to 3D vector lists

● Building blocks:

○ Linear layer

○ Non-linearity (ReLU)

○ Pooling (MaxPool)

○ Normalizations (BatchNorm)

○ Invariance

● Network examples:

○ VN-DGCNN

○ VN-PointNet

Summary: Enforcing a Prior (Equivariance)



● Scene Structure from Network Shaping:

Gradient alignments according to mutual 
information

● Semantic resonances:

○ Learned from DINO features

○ Allow coherent edit propagation of

■ semantics

■ appearance

● Motion resonances:

○ Learned from SAM instance masks

○ Allow coherent entity motions

Summary: Learning a Prior (Grouping, Equivariance)
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Thanks
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That’s All
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