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§ Planning formulated as Trajectory Posterior Sampling

Diffusion Models for Planning

[Janner et al. 2022] [Joao Carvalho et al. 2024]

§ implemented via diffusion guidance.
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❑ Observations:
o Diffusion Guidance dominates the planning time.

But limits the complexity of the costs 
o Generalization to new environments is also taken care of via guidance.

But limits generalization to small perturbations of an initial environment. 

Diffusion Models for Planning

Fast Prior Sampling.
Trajectory-level Prediction 
(avoids error accumulation)

Slow Motion Optimization. 
Not Generalizable to new 
environments. 

We can solve both issues by addressing the redundancy in the representation in all stages.4



1. Posterior Sampling via State-Space Diffusion.
ü Respect state-space topology  during diffusion, denoising, guidance.
ü Faster Training: Important bottleneck; retrain for every new experiment.
ü More effective training: State-space
ü Connection between Lie-algebra and state space permits a hybrid 

approach.
ü Faster Motion Optimization using Riemannian Guidance; major bottleneck.

2. Generalization by Equivariant Planning in Canonicalized Environment.
o Train on canonical environment and generalize to transformed 

environments.
o Here we deal with global SO(2) rotations around the base.
o Diffusion guidance is still used for local changes.
oMuch faster i.e. fewer guidance steps when local and global combined.

Our Proposal
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Equivariance + State-Space Diffusion and Guidance

Plan in the canonicalized
environment obtained via

equivariant frame prediction.

Trajectory Sampling via 
State-space diffusion

a) b) c)

De-canonicalize and discard 
infeasible branch.
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StRiDE: State-space Riemannian Diffusion for Equivariant Planning
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Obstacle

2 revolute DoF Configuration Space

Trajectories not crossing joint limits

New obstacle being avoided by guidance

Take steps in the tangent space and project back

By exploiting the topology of the state-space manifold we move faster towards feasible paths.



Ø Probability measure on SO(2): 
- Cannot define via density (does not exist!)
- Can still define via the sampling (pushforward measure)

Ø Isotropic Gaussian on SO(2)

Ø In the figure, we see the “density” with red
constrained on the unit vectors (isomorphic to SO(2)).

q SO(2), the group of 2x2 rotation matrices,  is 1d embedded in 4d. 

Isotropic Gaussian on SO(2) + Wrapped Normal Distribution



Ø Properties of our distribution: 
- Expectation:
- Closure under SO(2) convolution:   

Ø Connection with directional statistics. Density, if we return back to angles via log map?

Ø Wrapped Normal:

Isotropic Gaussian on SO(2) + Wrapped Normal Distribution



q Single-step Multi-Scale on-manifold Diffusion:

StRiDE: Diffusion Stage 
q State-space Representation: Use intrinsic parameters but embed in Euclidean.

q Isotropic Gaussian for on-manifold diffusion
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❑ Data from (expert) RRT-Connect :

❑ Collect trajectories. Both:
o positive (feasible for canonical environment) and
o negative (feasible for some rotated environment)

❑ Training Loss-distance on state-space manifold:

StRiDE: Data Collection and Training

.
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§ Input:
Key: Input and output trajectory representation:

Continuous Trajectories stay continuous. 
There is no redundancy.
Trajectories processed as vectors conforming to standard pipelines.

§ Output:
o Embedded Trajectory Noise 

o Can Normalize network output; implicitly done when we return to lie algebra.

§ Architecture (U-Net like):
o 1D-Conv across time:  Locality helps Compositionality.
o Fully Connected across states. 

StRiDE: Architecture
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q On-manifold Denoising:

q On-manifold guidance via Riemannian Gradient Descent: 

Interleave Denoising with Guidance
Gradient step on state-space: 

StRiDE: Denoising and Guidance
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Equivariance by canonicalization
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Equivariant h

frame
Environment
(point cloud)

Diffusion

Trajectory samples



❑ Plan in canonical environment and transform the plan back to the original.
❑ Here we deal with global SO(2) rotations around the base.

Symmetry breaking due to angle limits (positive and negative trajectories)
❑ Fewer guidance steps when local and global combined.

Our Proposal 2: Generalization via Equivariance

negative Positive, inside joint limits



Pandas Spheres Environment:
First row depicts results in the canonical environment. 
The second row indicates results averaged over transformed environments

- - success rates, – smoothness cost, – path cost,
- overall best cost, – planning time

- Ablation: We converge to higher success rates faster 
(with fewer guidance steps) due to Riemannian guidance 
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Hardware Experiments

- Canonical Environment in 
Simulation

- Random rotation of 148.6o

- Objects modelled as 
differentiable SDFs

- Real-world experiment, 
with random (global) 
rotation of 17.2o

- Pick object under drawer 
and place on top

- Real-world experiment, 
with random (global) 
rotation of 17.2o , with 
obstruction on top (local 
transformation)

- Pick object under drawer 
and place inside 17
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New environment without retraining
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Take home: Canonicalization + Riemannian Diffusion + Riemannian Guidance

Plan in the canonicalized
environment obtained via

equivariant frame prediction.

Trajectory Sampling via 
State-space diffusion

a) b) c)

De-canonicalize and discard 
infeasible branch.
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